Fork me on GitHub

Best Wishes for 2018

Exxelia wishes you a Happy Holidays Season and a Prosperous New Year


Published on 11 Dec 2017 by Marion Van de Graaf

Powerful ALUMUNIM ELECTROLYTIC CAPACITOR RANGES AT RAILTEX – BOOTH #H02

Felsic HV, long lifetime and high voltage screw terminal aluminum electrolytic capacitor The Felsic HV family of aluminum electrolytic screw terminal capacitors provides great performances in energy density and ultra-long lifetime. For instance, 6 800µF @450V fit into a  volume of Ø77 x 220mm  and can withstand 200,000h between 0 to 70° under 37Amps, which makes them the perfect choice for use in rolling stock traction systems or the CVS. The family also has one of the lowest ESR for aluminum capacitors with less than 10m0hms in most cases. Products are available for voltages from 160 to 450 Vdc, and offer capacitance values from 1500μF up to 47 000μF offering the best compromise between reliability and compacity. Snapsic HV, high voltage snap aluminum electrolytic capacitor Because it covers voltages from 16 to 500Vdc and temperatures up to +105°C, and because it is customizable, the Snapsic HV series is very versatile and can cover all needs of energy storage in medium voltage both in rolling stock equipment or signaling systems. Thanks to its high ripple current, it is often used in SMPS and HVAC rolling stocks units with a typical variation of 470µF @450V in Ø35 x 50mm, as well as in various signaling control units, where a smaller package can be used with for example 1 000µF @250V in Ø35 x 40mm.   Prorelsic, the long lifetime axial aluminum electrolytic capacitors for signaling equipment Exxelia’s range of aluminum electrolytic solutions would not be complete without the axial leaded Prorelsic series. These capacitors show high ripple current and extra-long life-time with 20 000h @105°C. The most common sizes are Ø8.5 x 19mm, Ø10 x 19mm and Ø12 x 30mm, with typical values of 47µF @40V, 100µF @25V and 47µF @100V respectively. Prorelsic capacitors are perfectly suited for smoothing, coupling/decoupling and energy storage functions in railway signaling equipment.

Exxelia at Space Tech Expo

ESA QPL Film Capacitors PM907S and PM948S are full series of Polyester Film Capacitors. PM907S products are suitable for voltages from 50V up to 1250V and offer capacitance values from 82nF up to 180μF. PM948S can be used from 50V up to 630V with capacitance values from 22nF up to 47μF. Both series can support extreme conditions with temperatures from -55°C to +125°C, and offer high energy density, low ESR & ESL and high RMS current. Film capacitor Series PM907S and PM948S are ESA QPL certified according to the ESCC Detail Specification No. 3006/025 and 3006/026   Smallest ESA QPL Ceramic Capacitor of the Market Exxelia ranges of low voltage MLCC for surface mounting, CEC19 and CNC19, have achieved the ESA Qualified Part List status under the criteria of the European Space Component Coordination’s (ESCC) 3009/042 and 3009/043 respectively. The  0402 size QPL-qualified parts are available from 10V to 25V, enabling substantial miniaturization and cost-saving. They are available either in the very stable NPO dielectric (type 1) or the high capacitance X7R (type 2). CEC and CNC series combine high capacitance values with high thermal and voltage stability. Versions with polymer terminations are also QPL-certified.   Miniature EMI filters for space application Exxelia’s gold-plated glass-sealed EMI filters SFC030 is the solution of choice to protect several embedded power supplies and data lines.  These small and reliable filters are available up to 5A @ 200V and 22nF.  Available in a Kovar package, the better alternative to steel for enhanced temperature cycling resistance, all Exxelia’s EMI filters for space are ESA qualified according to ESCC 3008. Thanks to this extensive experience in stringent ESA testing, Exxelia is able to adapt the tests of any filter according to any need (example: SMD 20A chip, 0pF capacitor value for an arrays of filters).

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.