QPL CERTIFICATION FOR PM907S & PM948S SERIES OF FILM CAPACITORS

Exxelia is pleased to announced the ESA/QPL certification for its film capacitors series PM907S and PM948S.


Series PM907S and PM948S of Film capacitors obtained the QPL certification from the European Space Components Coordination (ESCC). According to the ESCC Detail Specification No. 3006/025 and 3006/026 QPL certified products ensure superior performances, quality and reliability intended for use by the European Space Agency (ESA) and in Space in general.

PM907S and PM948S are full series of Polyester Film Capacitors. PM907S products are suitable for voltages from 50V up to 1250V and offer capacitance values from 82nF up to 180μF. PM948S can be used with a voltages from 50V up to 630V with capacitance values from 22nF up to 47μF. Both series can support extreme conditions with temperatures from -55°C to +125°C, and offer high energy density, low ESR & ESL and high RMS current.

Products are typically being used in SMPS (Switch Mode Power Suppliers) and BUS filtering.

These two certified series complete the list of Exxelia Group’s QPL certified film capacitors, that now includes:

– PM90S
– PM907S
– PM96S (T)
– PM94S
– PM948S
– MKT5
– KM111S
– KM94S

Published on 28 Jun 2016 by Marion Van de Graaf

Innovative low pass filters

Low-pass filter solutions are mainly used for EMI suppression in electronics systems. Exxelia Technologies (ex-Eurofarad), part of Exxelia Group, has developed several ranges of miniature filters with different low-pass configuration (C, L, Pi, T, 2xPi, 2xL and 2xT) mainly intended to protect electronic equipment from interferences. Exxelia Technologies produces sophisticated filters assembling Exxelia Group’s manufactured ceramic capacitors (X7R/ NPO) with ferrite inductors or winding cores in a shielding case. This solution’s main benefits are performance, reliability and optimal traceability. Considering a filter in a shielding case implies a good metallic package to insure high shielding performances with attenuation up to 10 GHz. Among options, Exxelia offers glass sealing, steel or kovar package using tin, silver or gold plating treatments to withstand any thermally or mechanically challenged applicaiton. Exxelia offers innovative EMI suppression filter solutions providing great shielding performance including the FC030 feedthrough mounted on shielding enclosure and FCM030 series designed to prevent EMI on printed circuit board. FC030 series is feedthrough filter allowing to prevent not only EMI conduction but also EMI radiation on power supply or data signals designs up to 200V. FC030 insertion loss can be 20dB at 1MHz to reach 70dB up to 10 GHz. FC030 series is extremely performant on low frequencies applications. On the other hand, FC030 can offer very low capacitance values starting from 5pF allowing to protect high bandwidth data signals. Operating temperature from -55C° up to +175C°. FC030 series is ESA qualified. FCM030 features same design and performances’ as FC030 and is intended for surface mount devices. FCM030 is packaged in full metallic silver plated allowing optimal contact with ground plane that improves the interferences flow to the ground. The series particularly fit for amplifiers, radars, sensitive HMI, accurate measuring.

Exxelia at Space Tech Expo – Booth #5009

100% invar tuning screws with self-locking system  Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed. High power and high frequency ceramics with the new C48X dielectric Range of high voltage ceramic capacitors based on brand new dielectric material C48X, combining most advantages of NPO and X7R dielectrics. Compared to X7R material, C48X dielectric allows to get the same capacitance values under working voltage with the unrivaled advantage of a very low dissipation factor (less than 5.10–4). Besides, it can also withstand very high dV/dt, up to 10kV/μs, which makes it the solution of choice for pulse and fast charge/discharge applications or firing units. Thus capacitors with C48X dielectric appear to be ideally suited for power applications where heat dissipation may be detrimental to performances and reliability. Magnetic components based on adaptive CCM technology Exxelia designed CCM technology to respond to the growing interest of electronic engineers for inductors and transformers with multiple outputs, high power density and reduced footprint. Qualified for aeronautic and space applications, the CCM product line features terrific robustness. The CCM technology adapts to most every need, even the harshest environments, including VIGON® resistance. The series offers five different sizes, allowing optimized component design in a pick-and-place surface mount (SMD) package. Through-hole (TH) packages are also available upon request. CCM transformers and inductors can operate over a wide temperature range with a minimal temperature of -55° C. The standard thermal grade of the technology is 140° C. The epoxy molding protecting the winding ensures a lower temperature gradient and a better heat dissipation. Each unit is thoroughly tested with a dielectric withstanding strength of 1,500 VAC.

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.